Discussion of Cairo & Sim (2017) Income Inequality, Financial Crises, and Monetary Policy

Pascal Paul

Federal Reserve Bank of San Francisco¹

¹The views expressed herein are solely mine and do not necessarily reflect the ones of the Federal Reserve Bank of San Francisco or the Federal Reserve System.

An Intuitive Story

Following an increase in income inequality ...

- ... wealthy individuals lend their unused income to less wealthy individuals,
- ... increasing aggregate credit, the debt-to-income ratio of the less wealthy,
- ... and raising the probability of a crisis

 \rightarrow Empirics - Supported by the data? \rightarrow Model - Description & Comments

An Intuitive Story

Following an increase in income inequality ...

- ... wealthy individuals lend their unused income to less wealthy individuals,
- ... increasing aggregate credit, the debt-to-income ratio of the less wealthy,
- ... and raising the probability of a crisis

 \rightarrow Empirics – Supported by the data? \rightarrow Model – Description & Comments

Great Recession

Sources: (a) Financial Accounts of the United States, Federal Reserve System; (b) Economic Policy Institute.

```
ightarrow But: N = 1
```

ightarrow Let's extend the sample !

Great Recession

Sources: (a) Financial Accounts of the United States, Federal Reserve System; (b) Economic Policy Institute.

 \rightarrow But: N = 1

ightarrow Let's extend the sample !

Great Recession

Sources: (a) Financial Accounts of the United States, Federal Reserve System; (b) Economic Policy Institute.

 \rightarrow But: N = 1

\rightarrow Let's extend the sample !

Data

- Combining data on crises dates with data on inequality
- 17 advanced economies
- Sample: 1870 2013

 $FC_{k,t} = \alpha^{k} + \beta L\Delta log(Inequality_{k,t}) + \gamma L\Delta log(X_{k,t}) + u_{k,t}$ $logit(FC_{k,t}) = \alpha^{k} + \beta L\Delta log(Inequality_{k,t}) + \gamma L\Delta log(X_{k,t}) + u_{k,t}$

ightarrow Did Isabel & Jae get it right ?

Data

- Combining data on crises dates with data on inequality
- 17 advanced economies
- Sample: 1870 2013

$$FC_{k,t} = \alpha^{k} + \beta L\Delta \log(Inequality_{k,t}) + \gamma L\Delta \log(X_{k,t}) + u_{k,t}$$
$$logit(FC_{k,t}) = \alpha^{k} + \beta L\Delta \log(Inequality_{k,t}) + \gamma L\Delta \log(X_{k,t}) + u_{k,t}$$

ightarrow Did Isabel & Jae get it right ?

Data

- Combining data on crises dates with data on inequality
- 17 advanced economies
- Sample: 1870 2013

$$FC_{k,t} = \alpha^{k} + \beta L\Delta \log(Inequality_{k,t}) + \gamma L\Delta \log(X_{k,t}) + u_{k,t}$$
$$logit(FC_{k,t}) = \alpha^{k} + \beta L\Delta \log(Inequality_{k,t}) + \gamma L\Delta \log(X_{k,t}) + u_{k,t}$$

 \rightarrow Did Isabel & Jae get it right ?

	OLS	Logit	OLS	Logit
Δ Income Share 1% _{t-1,t-5}	0.015*** (0.004)	0.481*** (0.133) [0.012]		
Δ Income Share 10% _{t-1,t-5}			0.011*** (0.003)	0.426*** (0.115) [0.009]
Number of crises	27	27	24	24
Observations	831	742	746	671
Countries	15	13	15	13
Country FE	\checkmark	\checkmark	~	\checkmark
Test for Country $FE = 0$	0.668	5.907	0.779	7.085
p-value	0.807	0.921	0.692	0.852
R ²	0.032	0.092	0.034	0.111
Pseudolikelihood	_	-105.260	_	-92.017
Overall test statistics	1.769**	25.428**	1.719**	30.868***
p-value	0.035	0.020	0.043	0.004
AUROC	0.774***	0.742***	0.795***	0.777***
Standard error	0.041	0.048	0.039	0.048

Standard errors in parentheses

* p < 0.1, ** p < 0.05, *** p < 0.01

Model - Kumhof, Rancière, and Winant (2015)

Heterogeneous Agents

Share χ : Wealthy – Shareholders – Creditors

$$U_t^T = \mathbb{E}_t \sum_{t=0}^{\infty} \left(\beta^T\right)^t \left\{ \frac{\left(c_t^T\right)^{1-1/\sigma_c}}{1-1/\sigma_c} + \psi^B \frac{\left[1+b_t\left(\frac{1-\chi}{\chi}\right)\right]^{1-1/\sigma_b}}{1-1/\sigma_b} + \psi^G \frac{\left[1+b_t^G\left(\frac{1-\chi}{\chi}\right)\right]^{1-1/\sigma_g}}{1-1/\sigma_g} \right\}$$

Share $(1 - \chi)$: Less Wealthy – Workers – Borrowers

$$U_t^B = \mathbb{E}_t \sum_{t=0}^{\infty} \left(\beta^B\right)^t \left\{ \frac{\left(c_t^B\right)^{1-1/\sigma_c}}{1-1/\sigma_c} \right\}$$

• Financial Crises

Default iff $\chi_t < U_t^{D,B} - U_t^{N,B}$ & occur cost $v_t y_t$ with $v_t =
ho_v v_{t-1} + \gamma_v$

Model - Kumhof, Rancière, and Winant (2015)

Heterogeneous Agents

Share χ : Wealthy – Shareholders – Creditors

$$U_t^T = \mathbb{E}_t \sum_{t=0}^{\infty} \left(\beta^T\right)^t \left\{ \frac{\left(c_t^T\right)^{1-1/\sigma_c}}{1-1/\sigma_c} + \psi^B \frac{\left[1+b_t\left(\frac{1-\chi}{\chi}\right)\right]^{1-1/\sigma_b}}{1-1/\sigma_b} + \psi^G \frac{\left[1+b_t^G\left(\frac{1-\chi}{\chi}\right)\right]^{1-1/\sigma_g}}{1-1/\sigma_g} \right\}$$

Share $(1 - \chi)$: Less Wealthy – Workers – Borrowers

$$U_t^B = \mathbb{E}_t \sum_{t=0}^{\infty} \left(\beta^B\right)^t \left\{ \frac{\left(c_t^B\right)^{1-1/\sigma_c}}{1-1/\sigma_c} \right\}$$

Financial Crises

Default iff $\chi_t < U_t^{D,B} - U_t^{N,B}$ & occur cost $v_t y_t$ with $v_t = \rho_v v_{t-1} + \gamma_v$

• Production: $y_t = z_t (k_{t-1})^{\alpha} (n_t)^{1-\alpha}$

- Search and matching frictions in the labour market (nash bargaining)
- Real wage rigidities (quadratic cost of changing wage)
- Pricing frictions (Calvo, partial inflation indexation)
- Capital good producers (adjustment costs)
- Government (taxes, unemployment benefits, b_t^G)

• Monetary policy: $i_t = \rho_i i_{t-1} + (1 - \rho_i) \left[i_t^* + \rho_\pi \left(\frac{\pi_t^Y - \pi^*}{4} \right) \right] + \sigma_m \sum_{j=1}^n \epsilon_{j,t-j} + \sigma_m \epsilon_{0,t}$

• Production:
$$y_t = z_t (k_{t-1})^{\alpha} (n_t)^{1-\alpha}$$

Search and matching frictions in the labour market (nash bargaining)

- Real wage rigidities (quadratic cost of changing wage)
- Pricing frictions (Calvo, partial inflation indexation)
- Capital good producers (adjustment costs)
- Government (taxes, unemployment benefits, b^G_t)

• Monetary policy: $i_t = \rho_i i_{t-1} + (1 - \rho_i) \left[i_t^* + \rho_\pi \left(\frac{\pi_t^Y - \pi^*}{4} \right) \right] + \sigma_m \sum_{j=1}^n \epsilon_{j,t-j} + \sigma_m \epsilon_{0,t}$

• Production:
$$y_t = z_t (k_{t-1})^{\alpha} (n_t)^{1-\alpha}$$

- Search and matching frictions in the labour market (nash bargaining)
- Real wage rigidities (quadratic cost of changing wage)
- Pricing frictions (Calvo, partial inflation indexation)
- Capital good producers (adjustment costs)
- Government (taxes, unemployment benefits, b^G_t)
- Monetary policy: $i_t = \rho_i i_{t-1} + (1 \rho_i) \left[i_t^* + \rho_\pi \left(\frac{\pi_t^Y \pi^*}{4} \right) \right] + \sigma_m \sum_{j=1}^n \epsilon_{j,t-j} + \sigma_m \epsilon_{0,t}$
- Aggregate shocks: Risk premium, χ_t , z_t , Nash bargaining power

• Production:
$$y_t = z_t (k_{t-1})^{\alpha} (n_t)^{1-\alpha}$$

- Search and matching frictions in the labour market (nash bargaining)
- Real wage rigidities (quadratic cost of changing wage)
- Pricing frictions (Calvo, partial inflation indexation)
- Capital good producers (adjustment costs)
- Government (taxes, unemployment benefits, b^G_t)
- Monetary policy: $i_t = \rho_i i_{t-1} + (1 \rho_i) \left[i_t^* + \rho_\pi \left(\frac{\pi_t^Y \pi^*}{4} \right) \right] + \sigma_m \sum_{j=1}^n \epsilon_{j,t-j} + \sigma_m \epsilon_{0,t}$
- Aggregate shocks: Risk premium, χ_t , z_t , Nash bargaining power

• Production:
$$y_t = z_t (k_{t-1})^{\alpha} (n_t)^{1-\alpha}$$

- Search and matching frictions in the labour market (nash bargaining)
- Real wage rigidities (quadratic cost of changing wage)
- Pricing frictions (Calvo, partial inflation indexation)
- Capital good producers (adjustment costs)
- Government (taxes, unemployment benefits, b^G_t)

• Monetary policy: $i_t = \rho_i i_{t-1} + (1 - \rho_i) \left[i_t^* + \rho_\pi \left(\frac{\pi_t^Y - \pi^*}{4} \right) \right] + \sigma_m \sum_{j=1}^n \epsilon_{j,t-j} + \sigma_m \epsilon_{0,t}$

• Production:
$$y_t = z_t (k_{t-1})^{\alpha} (n_t)^{1-\alpha}$$

- Search and matching frictions in the labour market (nash bargaining)
- Real wage rigidities (quadratic cost of changing wage)
- Pricing frictions (Calvo, partial inflation indexation)
- Capital good producers (adjustment costs)
- Government (taxes, unemployment benefits, b_t^G)

• Monetary policy: $i_t = \rho_i i_{t-1} + (1 - \rho_i) \left[i_t^* + \rho_\pi \left(\frac{\pi_t^Y - \pi^*}{4} \right) \right] + \sigma_m \sum_{i=1}^n \epsilon_{j,t-j} + \sigma_m \epsilon_{0,t}$

• Production:
$$y_t = z_t (k_{t-1})^{\alpha} (n_t)^{1-\alpha}$$

- Search and matching frictions in the labour market (nash bargaining)
- Real wage rigidities (quadratic cost of changing wage)
- Pricing frictions (Calvo, partial inflation indexation)
- Capital good producers (adjustment costs)
- Government (taxes, unemployment benefits, b_t^G)

• Monetary policy:
$$i_t = \rho_i i_{t-1} + (1 - \rho_i) \left[i_t^* + \rho_\pi \left(\frac{\pi_t^Y - \pi^*}{4} \right) \right] + \sigma_m \sum_{j=1}^n \epsilon_{j,t-j} + \sigma_m \epsilon_{0,t}$$

• Production:
$$y_t = z_t \left(k_{t-1}\right)^{lpha} \left(n_t\right)^{1-lpha}$$

- Search and matching frictions in the labour market (nash bargaining)
- Real wage rigidities (quadratic cost of changing wage)
- Pricing frictions (Calvo, partial inflation indexation)
- Capital good producers (adjustment costs)
- Government (taxes, unemployment benefits, b_t^G)

• Monetary policy:
$$i_t = \rho_i i_{t-1} + (1 - \rho_i) \left[i_t^* + \rho_\pi \left(\frac{\pi_t^Y - \pi^*}{4} \right) \right] + \sigma_m \sum_{j=1}^n \epsilon_{j,t-j} + \sigma_m \epsilon_{0,t}$$

Aggregate demand insufficiency driven by heterogeneity in MPCs

- Income inequality positively correlated with probability of a crisis
- 8 Endogenous prices and quantities skewed due to ZLB & Financial Crises
- 4 Monetary Policy
 - **1** Raising ho_{π} increases p(crisis) (higher borrowing costs) ...
 - ... but makes them less severe (more aggressive).
- **5** Optimal Monetary Policy (Loss Function with π -Skewness)
 - Lean mildly with wind in normal times ... aggressive reduction in crises.
 Natural rate adjusted rule (reduces quickly, but inertia to stay at ZLB longer)

$$i_t^* = (1 - \rho_{i^*}) i^* + \rho_{i^*} i_{t-1}^* - \sigma_{i^*} \delta_t^B$$

- Aggregate demand insufficiency driven by heterogeneity in MPCs
- 2 Income inequality positively correlated with probability of a crisis
- ${f 3}$ Endogenous prices and quantities skewed due to ZLB & Financial Crises
- 4 Monetary Policy
 - **1** Raising ρ_{π} increases p(crisis) (higher borrowing costs) ...
 - ... but makes them less severe (more aggressive).
- **5** Optimal Monetary Policy (Loss Function with π -Skewness)
 - Lean mildly with wind in normal times ... aggressive reduction in crises.
 Natural rate adjusted rule (reduces quickly, but inertia to stay at ZLB longer)

$$i_t^* = (1 - \rho_{i^*}) i^* + \rho_{i^*} i_{t-1}^* - \sigma_{i^*} \delta_t^B$$

- Aggregate demand insufficiency driven by heterogeneity in MPCs
- 2 Income inequality positively correlated with probability of a crisis
- 3 Endogenous prices and quantities skewed due to ZLB & Financial Crises

4 Monetary Policy

- 1) Raising ho_{π} increases p(crisis) (higher borrowing costs) ...
- ... but makes them less severe (more aggressive).
- **5** Optimal Monetary Policy (Loss Function with π -Skewness)
 - Lean mildly with wind in normal times ... aggressive reduction in crises.
 Natural rate adjusted rule (reduces quickly, but inertia to stay at ZLB longer)

$$i_t^* = (1 - \rho_{i^*}) i^* + \rho_{i^*} i_{t-1}^* - \sigma_{i^*} \delta_t^B$$

- Aggregate demand insufficiency driven by heterogeneity in MPCs
- 2 Income inequality positively correlated with probability of a crisis
- 3 Endogenous prices and quantities skewed due to ZLB & Financial Crises
- 4 Monetary Policy
 - **1** Raising ρ_{π} increases p(crisis) (higher borrowing costs) ...
 - ... but makes them less severe (more aggressive).
- **5** Optimal Monetary Policy (Loss Function with π -Skewness)
 - Lean mildly with wind in normal times ... aggressive reduction in crises.
 Natural rate adjusted rule (reduces quickly, but inertia to stay at ZLB longer)

$$i_t^* = (1 - \rho_{i^*}) i^* + \rho_{i^*} i_{t-1}^* - \sigma_{i^*} \delta_t^B$$

- Aggregate demand insufficiency driven by heterogeneity in MPCs
- 2 Income inequality positively correlated with probability of a crisis
- 3 Endogenous prices and quantities skewed due to ZLB & Financial Crises
- 4 Monetary Policy
 - **1** Raising ρ_{π} increases p(crisis) (higher borrowing costs) ...
 - ... but makes them less severe (more aggressive).
- **5** Optimal Monetary Policy (Loss Function with π -Skewness)
 - Lean mildly with wind in normal times ... aggressive reduction in crises.
 Natural rate adjusted rule (reduces quickly, but inertia to stay at ZLB longer)

$$i_t^* = (1 - \rho_{i^*}) i^* + \rho_{i^*} i_{t-1}^* - \sigma_{i^*} \delta_t^B$$

Optimal Monetary Policy

1 Ramsey problem?

2 Maximize welfare (aggregation difficult, bonds in utility)

2 Results driven by ...

1) ... inertia in MP-rule (just modeling) and ...

- 2 ... lack of commitment at ZLB (ignoring QE & forward guidance)
- ③ ... not to mention macro-prudential regulation ...
- Behavior of economy around crises (Paul, 2018b)
- **5** Current version: Piketty-style! very elaborate ...

Optimal Monetary Policy

- Ramsey problem?
- 2 Maximize welfare (aggregation difficult, bonds in utility)

2 Results driven by ...

- ... inertia in MP-rule (just modeling) and ...
- 2 ... lack of commitment at ZLB (ignoring QE & forward guidance)
- ③ ... not to mention macro-prudential regulation ...
- 4 Behavior of economy around crises (Paul, 2018b)
- **5** Current version: Piketty-style! very elaborate ...

Optimal Monetary Policy

Ramsey problem?

2 Maximize welfare (aggregation difficult, bonds in utility)

2 Results driven by ...

... inertia in MP-rule (just modeling) and ...

- 2 ... lack of commitment at ZLB (ignoring QE & forward guidance)
- **3** ... not to mention macro-prudential regulation ...
- ④ Behavior of economy around crises (Paul, 2018b)
- **5** Current version: Piketty-style! very elaborate ...

Optimal Monetary Policy

- Ramsey problem?
- **2** Maximize welfare (aggregation difficult, bonds in utility)

2 Results driven by ...

- 1 ... inertia in MP-rule (just modeling) and ...
- 2 ... lack of commitment at ZLB (ignoring QE & forward guidance)
- **3** ... not to mention macro-prudential regulation ...
- 4 Behavior of economy around crises (Paul, 2018b)
- **5** Current version: Piketty-style! very elaborate ...

Optimal Monetary Policy

- Ramsey problem?
- **2** Maximize welfare (aggregation difficult, bonds in utility)

2 Results driven by ...

- 1 ... inertia in MP-rule (just modeling) and ...
- 2 ... lack of commitment at ZLB (ignoring QE & forward guidance)
- **3** ... not to mention macro-prudential regulation ...
- 4 Behavior of economy around crises (Paul, 2018b)
- **5** Current version: Piketty-style! very elaborate ...

Optimal Monetary Policy

- Ramsey problem?
- 2 Maximize welfare (aggregation difficult, bonds in utility)

2 Results driven by ...

- 1 ... inertia in MP-rule (just modeling) and ...
- 2 ... lack of commitment at ZLB (ignoring QE & forward guidance)
- **3** ... not to mention macro-prudential regulation ...
- 4 Behavior of economy around crises (Paul, 2018b)
- **5** Current version: Piketty-style! very elaborate ...

Result

Result

 \rightarrow That's for a $\epsilon_{\lambda,1:12} = \sigma_{\lambda} \cdot [3\,3\,3\,3\,3\,3\,3\,3\,2.5\,2\,1.5\,1\,0.5]'$!!!

Result

 \rightarrow That's for a $\epsilon_{\lambda,1:12} = \sigma_{\lambda} \cdot [3\,3\,3\,3\,3\,3\,3\,3\,2.5\,2\,1.5\,1\,0.5]'$!!!

References

- Kumhof, M., R. Rancière, and P. Winant (2015). Inequality, leverage, and crises. *American Economic Review 105*(3), 1217–45.
- Paul, P. (2018a). Historical patterns of inequality and productivity around financial crises. *Federal Reserve Bank of San Francisco Working Paper 2017-23*.
- Paul, P. (2018b). A macroeconomic model with occasional financial crises. Federal Reserve Bank of San Francisco Working Paper 2017-22.